LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FOURTH SEMESTER - APRIL 2013

ST 4809 - APPLIED EXPERIMENTAL DESIGN

Date : 25/04/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

SECTION - A

Answer all the questions:
1 .Define the term replication.
2. State any two agricultural applications of design of experiments.
3. What is meant by random model ? Give an example .
4. Briefly explain the term critical difference.
5. Define the term generator
6. Define principle fractions.
7. When do we go for repeated L.S.D ?
8. Define minimal function .
9. State any four parametric conditions of a PBIBD
10. Define a resolvable BIBD with an example .

SECTION-B

Answer any Five questions:
11. Describe, the analysis of variance for RBD stating all the hypothesis, ANOVA and conclusions.
12. Confound the highest order interaction in 2^{4} design using 3 replications.
13.Define mutually orthogonal contrast and show that in 2^{3} design all the contrasts are mutually orthogonal.
14. Discuss in detail the need for a Split-plot design with suitable example.
15. Derive the sum of squares for a 3^{3} factorial design.
16. Explain the fractional factorial design with suitable illustration.
17.Explain the m-ple Lattice Square design and hence construct lattice square design when the block size $\mathrm{k}=3$.
18. Construct group divisible design with three groups.

SECTION-C

Answer any Two questions:
($2 \times 20=40$ marks $)$

19a. Discuss in detail the non-statistical principle of experimental design with suitable illustration.
b. Explain the efficiency of LSD over RBD with suitable application.

20a.Explain the term key block and derive the block contents for ABCDE in 2^{5} factorial design using key block.
b. Discuss in detail confounding in more than one block.

21a. Construct triangular PBIBD with three associate class.
b. Explain the parametric conditions of a PBIBD
22. Write shorts on the following
a) Principal fraction
b) Construction of BIBD using MOLS
c) Lattice Square designs
d) Galois Field

