LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION - STATISTICS		
FOURTH SEMESTER – APRIL 2013		
ST 4809 - APPLIED EXPERIMENTAL DESIGN		
Date : 25/04/2013 Dept. No. Time : 1:00 - 4:00	Max. : 100 Marks	
SECTION – A		
Answer all the questions:	(10 x 2 = 20 marks)	
1 .Define the term replication.		
2. State any two agricultural applications of design of experiments.		
3. What is meant by random model ? Give an example .		
4. Briefly explain the term critical difference.		
5. Define the term generator		
6. Define principle fractions.		
7. When do we go for repeated L.S.D ?		
8. Define minimal function .		
9. State any four parametric conditions of a PBIBD		
10. Define a resolvable BIBD with an example .		
SECTION-B		
Answer any Five questions:	$(5 \times 8 = 40 \text{ marks})$	
11. Describe, the analysis of variance for RBD stating all the		
hypothesis, ANOVA and conclusions.		
12. Confound the highest order interaction in 2^4 design using 3 replications.		
13.Define mutually orthogonal contrast and show that in 2^3 design all the contrasts are mutually		
orthogonal.		
14. Discuss in detail the need for a Split-plot design with suitable example	2.	
15. Derive the sum of squares for a 3^3 factorial design.		
16. Explain the fractional factorial design with suitable illustration.		
17.Explain the m-ple Lattice Square design and hence construct lattice square design		
when the block size $k=3$.		
18. Construct group divisible design with three groups.		

SECTION-C

Answer any Two questions:	$(2 \times 20 = 40 \text{ marks})$
19a. Discuss in detail the non-statistical principle of experimental design withb. Explain the efficiency of LSD over RBD with suitable application.	suitable illustration. (6+14 Marks)
 20a.Explain the term key block and derive the block contents for ABCDE in 2⁵ factorial design using key block. 	
b. Discuss in detail confounding in more than one block.	(8 +12Marks)
21a.Construct triangular PBIBD with three associate class.	
b. Explain the parametric conditions of a PBIBD	(12+8 Marks)
 22. Write shorts on the following a) Principal fraction b) Construction of BIBD using MOLS c) Lattice Square designs d) Galois Field 	(5+5+5-Marks)
